Numerical Analysis of the Fractional Seventh-order Kdv Equation Using an Implicit Fully Discrete Local Discontinuous Galerkin Method

نویسندگان

  • LEILEI WEI
  • YINNIAN HE
  • YAN ZHANG
چکیده

In this paper an implicit fully discrete local discontinuous Galerkin (LDG) finite element method is applied to solve the time-fractional seventh-order Korteweg-de Vries (sKdV) equation, which is introduced by replacing the integer-order time derivatives with fractional derivatives. We prove that our scheme is unconditional stable and L error estimate for the linear case with the convergence rate O(h + (∆t) + (∆t) α 2 h k+ 1 2 ) through analysis. Extensive numerical results are provided to demonstrate the performance of the present method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Cable equation, Fractional differential equation, Radial point interpolation method, Meshless local Petrov – Galerkin, Stability analysis

The cable equation is one the most fundamental mathematical models in the neuroscience, which describes the electro-diffusion of ions in denderits. New findings indicate that the standard cable equation is inadequate for describing the process of electro-diffusion of ions. So, recently, the cable model has been modified based on the theory of fractional calculus. In this paper, the two dimensio...

متن کامل

A numerical study of variable depth KdV equations and generalizations of Camassa-Holm-like equations

In this paper we study numerically the KdV-top equation and compare it with the Boussinesq equations over uneven bottom. We use here a finite-difference scheme that conserves a discrete energy for the fully discrete scheme. We also compare this approach with the discontinuous Galerkin method. For the equations obtained in the case of stronger nonlinearities and related to the Camassa-Holm equat...

متن کامل

A Fully Discrete Discontinuous Galerkin Method for Nonlinear Fractional Fokker-Planck Equation

The fractional Fokker-Planck equation is often used to characterize anomalous diffusion. In this paper, a fully discrete approximation for the nonlinear spatial fractional Fokker-Planck equation is given, where the discontinuous Galerkin finite element approach is utilized in time domain and the Galerkin finite element approach is utilized in spatial domain. The priori error estimate is derived...

متن کامل

Fourth-order numerical solution of a fractional PDE with the nonlinear source term in the electroanalytical chemistry

The aim of this paper is to study the high order difference scheme for the solution of a fractional partial differential equation (PDE) in the electroanalytical chemistry. The space fractional derivative is described in the Riemann-Liouville sense. In the proposed scheme we discretize the space derivative with a fourth-order compact scheme and use the Grunwald- Letnikov discretization of the Ri...

متن کامل

Analysis of the local discontinuous Galerkin method for the drift-diffusion model of semiconductor devices

Abstract: In this paper we consider the drift-diffusion (DD) model of one dimensional semiconductor devices, which is a system involving not only first derivative convection terms but also second derivative diffusion terms and a coupled Poisson potential equation. Optimal error estimates are obtained for both the semi-discrete and fully discrete local discontinuous Galerkin (LDG) schemes with s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013